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The cooling of a spherical body in case when radiation is the only heat transfer mechanism between the
body surface and the environment has been considered. A mathematical process model employing an
own approximate kinetic equation of heat conduction has been worked out. Thus, the process has been
described by an ordinary differential equation combined with an algebraic one. The proposed simplified
model has been compared with the exact solution and with approximate relations presented by Su [4]. It

has been found that the proposed model is accurate and employable for both long and short times as
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1. Introduction

In some cases, e.g. in outer space technologies as well as in
cryogenic engineering, the surface transmitting the heat is sur-
rounded with vacuum (heat loss from space vehicles, heat loss from
vacuum insulations). Therefore, the mechanism of heat convection
does not exist and radiation is the only heat transfer mechanism
between the body surface and the environment. In this paper the
cooling of a spherical body in the described case has been
considered.

This problem was analysed previously [1—4]. Transient cooling
problem with conduction and radiation for a hot spherical body
covered with a cold coating material was considered in [1]. Modest
[2] discussed the performance of a simple longitudinal rectangular-
fin radiator used to reject heat from a tubular space craft. A
different problem exists in case of occurrence of convection as an
additional to radiation heat transfer mechanism during heating/
cooling. A case such as that for heating of a spherical body (droplet)
was analysed by Sazhin [5,6].

If radiation is the only heat transfer mechanism between the
body surface and the environment the distributed process model is
based on the equation of transient heat conduction in sphere with
boundary condition for surface in the form of Stefan—Boltzmann
equation for radiation. The basic difficulty in solving equations of
this model is the fact of existence of partial differential equation
with non-linear boundary condition. The numerical solving of
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these equations is time-consuming particularly in case of recurrent
calculations. For this reason it is convenient to simplify the
mathematical process description by elimination of spatial coor-
dinate inside the body. In such case an ordinary differential
equation can be employed for mathematical formulation of the
problem.

Campo and Villasefior [3] compared the results of solution of
distributed model of the process with the results of solution of so
called classical lumped model based on the assumption of uniform
temperature of spherical body. The sink temperature in this case
was taken as zero. The temporal variations of relative errors of both
the average body temperature as well as the boundary to center
temperature ratio were compared. The terms for which the
employment of classical lumped model gives the approvable errors
were fixed.

Su [4] improved the classical lumped model by introducing
a distinction between the average body temperature and the
boundary temperature. Two models presented by Su are better
compatible with the distributed model than the classical lumped
model.

In this paper for description of radiative cooling of a spherical
body an own simplified relationship, based on polynomial
approximation, has been employed. The employment of this rela-
tionship leads, like in the cases of approximations employed by Su,
to elimination of spatial coordinate from process model i.e. to
formulation of problem with an ordinary differential equation. The
proposed way of approximate calculations has been numerically
tested by comparison with the exact solution.

The main advantage of presented approximations is the rate of
calculations: the length of time of calculations in this case is
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Nomenclature

A A dimensionless temperatures defined by Egs. (3) and (4)
Bi(= hR/k) Biot number

specific heat of body, ] kg~' K~!

heat transfer coefficient, W m 2 K
thermal conductivity of body, W m~! K™!
radiation-conduction parameter (Eq. (21))
parameter (Eq. (15))

spatial coordinate, m

radius of spherical body, m

temperature, K

time, s

,mﬁ

35
*3

TN ZZxS
=
o

Greek symbols
a(= k/(cpp)) thermal diffusivity, m? s~!

relative error (Eq. (48))

relative error (Eq. (47))

surface emissivity

dimensionless spatial coordinate (Eq. (6))
Stefan-Boltzmann constant (= 5.67-10° 8 W m 2 K%)
dimensionless temperature (Eq. (19))

dimensionless time (Eq. (10))

density, kg m~3

T ATAI O B>

Subscripts and superscripts

ex exact

i initial

s sink

0 body center
1 body surface

average value

considerably less than in the case for the distributed model. Also
a good accuracy of calculations is observed.

Some practical examples of application of the considered case of
radiative cooling in vacuum are: thermal sprays for rapid solidifi-
cation and determination of thermophysical properties of spherical
bodies levitating in outer space.

Though a case of cooling of a spherical body has been considered
in this paper there is a possibility of generalization of the simplified
relationship for other body shapes (slab, cylinder).

2. General relationships

If a temperature profile in spherical body is known, an average
body temperature can be determined on the base of the following
balance equation (Tief — any reference temperature):

R
g’ﬂ?RBpCp (T~ Toeg) = / Amr ¢y (T — Toer)dr (1)
0
which results in the following equation:
R
T:;i/ﬂnh 2)
R3
0

A dimensionless variable A, characterizing a ratio of the heat
amount emitted out by body from process beginning to the total
heat amount possible for emission, has been defined:
T,-T
i -Ts

A= (3)

Analogically, a local dimensionless variable A characterizing
a ratio of the local heat amount emitted out to the total heat
amount possible for emission has been defined:

_T-T

(4)

The following relation between A and A can be easily obtained:

1
A-3 / P Adn (5)
0
where 7 is a dimensionless spatial coordinate:
r
n= R (6)

3. Distributed model

The heat conduction in sphere is described by the following
equation:

BT a 0 26T

&—E&Qa) 7
The initial condition has the form:

T=T fort=0 (8)

From sphere surface the heat is transported to environment by
radiation. Hence the following boundary condition for surface ari-
ses [7]:

—k (g) - = sa(T{l — Ts4> 9)

When introducing the dimensionless spatial coordinate n and
the dimensionless time t:

ot
T = 2 (10)
the equation of heat conduction can be converted into the form:
A 1 8/ ,0A
o = on("an) ()

with initial condition:

A=0fort=0 (12)

and boundary condition:

(5n), = N[t =01 (13)
where the constants A; and Ny, are defined as follows:
Ti
S s (14)
73
N - eoR(T; — Ts) (15)

rc k

The parameter N,. characterizes a ratio of the heat conduction
resistance to the heat radiation resistance. When the heat
conduction resistance equals zero (k — «), then N;, = 0. In such
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case the rate of body cooling is controlled only by heat radiation
resistance. Contrary, when the heat radiation resistance equals
zero, then N;.— =, and the rate of body cooling is controlled only
by heat conduction resistance. The parameter N,. plays an
analogical role as the Biot number in case of convectional heat
transport between the body surface and the environment. If
Ny, — oo(similarly if Bi — ) the condition Ay =1 is valid instead of
boundary condition (13) and the analytical solution of Eq. (11) has
the known form [8]:

A=1-

1
— z:lﬁexp(—nzﬁzr) (16)
n=

When differentiating Eq. (5) towards time and taking into
account the equation of heat conduction (11) one can get:

dA 9A
=3 (%)n:1 (17)

The value of derivative on body surface is a result of boundary
condition (13). Hence:

W v - a4 - 1] (18)

In items [3] and [4] a case of zero sink temperature (Ts = 0) is
considered and the dimensionless temperature is defined as follows:

g — I (19)

For Ty = 0, the relations between A and 0§ as well as between
A and 0 are following: § = 1 —A and § = 1—A. For Ty = 0 Eq. (18)
becomes simplified to the form:

di

= —3Nyc0] (20)
where:

eoRT? .
Nre = — - = AN, (21)

4. Classical lumped model and Su improved lumped models

In classical lumped model the body temperature is assumed to
be uniform at any time, i.e. # = 8 (also A = A). In such case, after
separation of variables and after integration of Eq. (20), one can get
(for Aj=1):

0 =1-A= (1+9Ny1)" /3 (22)

Su [4] introduced to classical lumped model an improvement
consisting in distinction between the average body temperature
and the boundary temperature. For description of temperature
profile in sphere he employed the Hermite one-side and two-side
approximations. The one-side approximation of H,o/Hoo type led
to the equation of I Su model:

Nicf} + 86, — 86 = 0 (23)

The two-side approximation of H 1/Ho o type led to the equation
of II Su model:

The above algebraic equations, resulting from the employ-
ment of Hermite approximations, were utilised for numerical

solving the differential Equation (20). In estimation presented in
[4] both approximations give more exact results in comparison
with classical lumped model where #; = 8 but the employment
of the two-side approximation (Eq. (24)) results in smaller
errors.

It has been proved in Appendix A that the assumption of para-
bolic temperature profile in the sphere [9—11]: T = ag + a,r?
where ag and a; are temporal functions, leads to the relationship
(A.6) which combined with the boundary condition (13) gives the
relation:

Nic|(Ai = An*=(ai - 1)] = 54 - A) (25)

For A; = 1 this equation is identical with relation (24) proposed
in [4]. Taking into consideration in Eq. (17) the relation (A.6) one
can get:

&

— 15(A; — A) (26)

Q

T

For A1 =1 the above relation is known as the Glueckauf equation
or the Linear Driving Force (LDF) equation (12) and is often
employed in problems of mass transfer kinetics (adsorption).

If convection is the only heat transfer mechanism between the
body and the environment the relation (27) is valid instead of the
boundary condition (13):

(%) = Bi(1 - A7) (27)
377 n=1

When combining this relation with (A.6) one can get a formula

describing the sphere surface dimensionless temperature:

A+ 02Bi
1= 1102Bi

Then taking into account this relation in Eq. (26) one can obtain
after integration:

(28)

A=1 —exp( 157 ) (29)

- 1+5/Bi

Dombrovsky and Sazhin [11] utilised the parabolic temperature
profile to describe the heating of spherical droplet. They analysed
the runs of the dimensionless surface temperature A; in the func-
tion of the product Bi-t for various Bi values. They found the courses
corresponding with the analytical solution except the range of
small 7 values. A similar conclusion can be seen as a result of the
work on the analysis of analogical diffusion process in porous
adsorbent pellet [9]: 7 > 0.05 was accepted as the validity criterion
for the above relations.

5. Approximate kinetic equation of heat conduction

Approximate kinetic equations are often employed for modeling
kinetics of transfer of component in adsorption processes
[9,10,12—14]. In consideration of analogy between the heat and the
mass transfer processes these equations can be successfully
employed for modeling heat conduction processes.

The temporal derivative of A is given by differentiation of
Eq. (16):

dA

A o\ 2.2
o 6;exp( n?m2t) (30)
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For long times (A— 1)the series in formulas (16) and (30) are
quick-convergent and the first summand is important. Thus:

SN

= 6exp(—m?1) = w2(1 - A) (31)

For short times (A— 0) the formula (16) becomes simplified as
follows [8]:

T
_ 6\/%— 3¢ (32)

When differentiating this relation one can get:

x|

A 3 3
e (33)

T —
1—~/1—§~A

Using the approximation v1 —x = 17%& valid for small x
values, it is possible to write:

@: 3

dr — T\
()

In this paper a simplified kinetic equation has been employed.
This equation is based on the following function:

dA/dt
1-A
The expression k;, = (dA/dt)/(1 —A) acts as the heat transfer

coefficient on the analogy of mass transfer coefficient in [14]. In
accordance to (31) for A— 1the implication kj, = 7% occurs as well as

18

= =3 (34)

|

71:2} A = (kp—m%)-A (35)

limK = 0 (36)
A—1

It results from (34) and (35) that for small values of A:

1834
K = W]_A — mA (37)
So:
lim K = % (38)

The variation of the function K = fex(A) is depicted in Fig. 1 in the
form of signs. This variation corresponds with analytical solution of
equation of heat conduction in sphere with boundary condition of
first type (A1 = 1). The approximate equation has been based on the
substitution of the function K = fx(A) with third degree polynomial:

K=co+c1(1—=A) +c3(1—A+c3(1—A)3 (39)

The relations (36) and (39) give cop = 0 while relations (38) and
(39) lead to the result:

18
C1+C+C3 = F (40)

Eq. (39) can be written in the form:
18 T T2 3
K = ?—Cz—(,} (1—A)+C2(1—A) +C3(1—A)
After transformations one can obtain:

F = 7(C2 + 2C3) + C3Z (41)

where

_ F

model in this work
A A exact model

Fig. 1. Comparison of exact (distributed model) and approximate (proposed model)
relations between K and A.

F:l(L—E) (42)
A\l-A T

The variation of F vs. A, resulting from the exact solution of
conduction equation, is depicted in Fig. 2. This variation has been
approximated using a linear function (relation (41)). Parameters of
the line have been determined: ¢; + 2c3 = 2.8850, c3 = —3.1705.
Then the following values have been obtained: ¢y = 0, c; = —0.3259,
c2 =9.2260, c3 = —3.1705. The variation of K vs. A, resulting from the
polynomial approximation, is depicted in Fig. 1 in the form of solid
line. As can be seen, the run of approximating function coincides
with the exact one.

The approximate kinetic equation has been obtained by
comparison of right sides of Egs. (35) and (39). It has the form:

dA _ [Tc2+

|| =

3 . —
Fh > g —Zy] (1-A) (43)
j=1

[K(1-A)-18/=]/A

'? T I T I T l T I T

Fig. 2. Determinations of constants in simplified kinetic equation.
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The main advantage of employment of Eq. (43) is the fact of
occurrence of small errors tending to zero for both the long and the
short process times. Contrary, the employment of LDF equation for
short times encumbers the results with considerable errors which
results from:

o Ao Ao {1 - exp(-159
-0 ex 7—0 ﬁ\/f— 37:

where the integrated LDF equation (26) (for A; = 1) and the relation
(32) have been utilised.
The relation (43) generalised for A; < 1 has the form:

- 1} -1 (44)

A 3
CCIT’;‘ [2 %Z A2 (A — A)’] (A — (45)

When combining relation (45) with boundary condition (13)
one can obtain:

[nz +A—ZC]A2 A, - A)’] (A — A)

1A
= 3N [ (A — A= (A - 1)Y] (46)

From the algebraic Eq. (46) one should calculate A;. Details of
solution are presented in Appendix B. If A; is determined one can
integrate numerically the ordinary differential Eq. (45).

6. Algorithms of calculations

Because all calculations were applied to A; = 1, then Ny, = Nr.
Data for calculations were various values of N,. Results of
calculations are relationships between A and 7. In numerical
calculations in the first place the results obtained on the base of
proposed model with the results of exact calculations have
been compared. For comparisons also the runs of relationships
between A and t both for Su models and for classical lumped
model have been determined. The following models have been
considered:

1. Distributed (exact) model

For exact solution of Eq. (11) with initial condition (12) and
boundary condition (13) a procedure based on Crank-Nicolson
scheme [15] has been employed. To obtain A value it was necessary
to apply the integration in accordance with relation (5). The
Simpson method has been employed. The values of function have
been calculated using the Lagrange interpolative formula.

2. Simplified model proposed in this work

Eq. (45) has been integrated numerically using the Runge-Kutta
method. Values of A; have been calculated numerically from rela-
tion (B.1) using the Newton method.

3. Su models

Eq. (18) has been integrated numerically using the Runge-Kutta
method. Values of A; have been calculated according to algebraic
Eq. (25), solved numerically using the Newton method (II Su
model). Because the I and the II Su models differ only in a multi-
plier, in I Su model the constant equal to 5 in formula (25) one
should substitute with the constant equal to 8.

4. Classical lumped model

The relation (22) has been utilised in the calculations.

7. Results of calculations

The presented simplified model of radiative cooling of a spher-
ical body has been verified numerically. As a measure of deviations
between the numerical values obtained by simplified model (app)
and the values obtained by distributed model (ex) two types of
relative errors, denoted as A and ¢, have been employed. The
relative error A was defined as follows:

Kapp - Eex

A = 9P (47)
Aé’X
where Aey is a value determined from the distributed model.
Definition of error ¢ is different:
6 = (1 7Z)app7_(1 72)6}( (48)
(1 - A)ex

The employment of relative errors defined by Eq. (48) makes
possible a comparison between deviations of presented simplified
model and deviations of Su models [4] because for T; = 0 the (1 — A)
values correspond with dimensionless temperatures T/T;.

7.1. Comparison of accuracy of considered models

Fig. 3 shows temporal variations of A values predicted by both
the distributed model and the presented simplified model for
various values of radiation-conduction parameter N,. The higher
value of radiation-conduction parameter, the greater is the value of
A for a given time. For the extreme case when Ny — o« the exact run
has been determined on the base of Eq. (16). Moreover, it can be
observed that the approximate and exact values are very close in
the whole range of N;. values. Therefore, the proposed simplified
model is not limited in employment only to good heat conductors.
The model predicts accurate results in extreme cases: for very
small and very large (Ny— «) values of radiation-conduction
parameter.

Aj =1
model in this work
A A A exactmodel

1 N,=35

N,=80

N,.= 20

Fig. 3. Temporal variation of A for various Nyc.
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0.15 —
] NL=07 A=1
bl model in this work
o1 === Il model of Su
B — — — Imodel of Su
] — - — classical lumped model
0.05 —
. e rese i
5 o e mcpoziooze=c
7 ~ B L B e
1 RN
" | ~ -
-0.05 — .-
-0.1 —
-0.15 -
T T IIHHI T T \IIIHI T T \W\I\ll T T
0.001 0.01 0.1 1
T

Fig. 4. Temporal variation of ¢ at N, = 0.7 for various models.

Figs. 4—6 present relations between the relative error ¢, defined
by Eq. (48), and the dimensionless time 7 for various values of
radiation-conduction parameter Ni..

Fig. 4 displays deviations between the values predicted by
various compared models for N;. = 0.7. The lowest deviations, less
than 1%, gives Il Su model. The simplified model proposed in this
work gives a maximum deviation of 1.6%. I Su model gives
a maximum deviation of 1.8%. The classical lumped model gives
a maximum deviation above 5%. It can be observed that for each
analysed model a maximum deviation from the exact value occurs
for different value of dimensionless time. Moreover, the simplified
model presented in this work gives only positive deviations
whereas the classical lumped model gives only negative ones. The
Su models give both positive and negative deviations.

Fig. 5 displays results for N;. = 3.5. For this value of parameter
a maximum error of the simplified model presented in this work is
equal to 3.2% and is the smallest from among all errors of analysed
approximate models. The classical lumped model cannot be
employed in this case because of its maximum deviation equal
about 16%.

0.15 —
o N.=35 A=1
— model in this work
oad  |==--- Il model of Su

2 — — — I model of Su
— - — classical lumped model

'

T T T TTT1] T T T T T T T 1T 1
0.001 0.01 0.1 1

T

Fig. 5. Temporal variation of ¢ at N, = 3.5 for various models.

0‘15—_ Nﬂ;: 20 Aj=1
] model in this work
4 === Il model of Su
0.1 — — — Imodel of Su
- o classical lumped model
. ’,4 ~
i - .
0.05 — P ~
i - Y
4 EEL e T A Y
_=’-,_’ N A
S ° ==
- \ S e
5 - -
S \ -
005— ° Ve
- N \ 7
1 - \ P .
\ \
0.1 — \ / 7
] A\ - .
] /
0.15 \ J
LR T T I T T I T T
0.001 0.01 0.1 1
T

Fig. 6. Temporal variation of ¢ at N, = 20 for various models.

The model presented in this work gives acceptable errors 6 even
for N;c = 20 (4.4%). For this order of magnitude of this parameter
not any model is competitive — it can be seen in Fig. 6. However, its
accuracy decreases with an increase of radiation-conduction
parameter i.e. the deviations increase. But the increase is slight. For
this reason the proposed model is peerless for large N;. values —
thus it can be employed for any N, value.

Table 1 gives the maximum deviations defined by Eq. (48) for
particular models and for various values of parameter Ny..

Figs. 4—6 show that for Il Su model the maximum errors occur
within the range of 0.01 < t < 0.1 whereas for the proposed models
within the range of 0.1 < 7 < 1. Therefore, it would be advisable to
employ in calculations both mentioned models: for short times —
the model presented in this work, for longer times — the Il Su model.
Table 2 presents the values of maximum errors referred to the
described hybrid method of calculations and the limiting time for
which the maximum errors occur. The average value of limiting time
equals about 0.12. In Figs. 4—6 one can observe the limiting points.

Fig. 7 illustrates a temporal variation of relative errors A defined
by Eq. (47). When comparing this variation with the variation
presented in Fig. 5 (referring to the same value of N;.) one can
observe the fundamental differences. For short times both Su
models give considerable relative errors A. The shorter time, the
errors are larger. Contrary to this, the values of A for results pre-
dicted by the proposed model are small and tend towards zero at
1 — 0. Different values of errors A and ¢ appear as a consequence of
different definitions: quantity A (the base for calculation of A)
determines the amount of heat emitted out by body while (1-A)
(the base for calculation of §) determines the heat amount possible
for emission which is dependent on the average body temperature.
For short times the quantities A are small. It results in large relative

Table 1
Maximum values of ¢ for various models at A; = 1.

Nre 5maXv %

Classical lumped model ISumodel II Sumodel Proposed model
0.7 -54 -1.8 0.7 1.6
1.5 -9.6 -3.2 1.6 2.3
35 -16.5 -53 31 3.0
80 -250 -8.0 52 3.7
20 —35.7 -12.0 7.7 4.4
200 -— 14 4.6
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Table 2
Maximum values of ¢ for hybrid method (A; = 1).
Nye Omax» % Tlimit
0.7 0.6 0.130
1.5 11 0.128
3.5 1.6 0.125
8.0 21 0.120
20 2.5 0.115
200 29 0.105
04 5
I \
0.3 — .
d \
0.2 - i \
i \
0.1 »
- .
b v ~ U~
A 0 e e — =
i FAN
0.1 — P
/ ,
- /I
/7
02 P No=35 A=1
T ’ model in this work
03 A Il model of Su
|- i — — ImodelofSu
1 S — - — - classical lumped model
-0.4 IIII'T/'II T T lIIIIII T T IIIIIII T T
0.01 0.1 1

T

Fig. 7. Temporal variation of A at N, = 3.5 for various models.

errors A. Contrary to this, the quantities (1—A) are then large (close
to one). Therefore, the relative errors ¢ are small. Large relative
errors A of Su models for small values of T appear as a consequence
of relation (44) referred to error value for t — 0.

7.2. Surface temperature

A precise determination of body surface temperature is of
fundamental importance in modeling of process of radiative body

N.=35 A=
model in this work
————— Il model of Su

— — — Imodel of Su

— - — classical lumped model
T1\A A A exactmodel

0 =

0.001 0.01 0.1 1
T

Fig. 8. Comparison of temporal variations of A; for various models.

cooling because the amount of heat emitted is a function of fourth
power of the temperature. Fig. 8 shows a temporal variation of
A1 = (T; — T))[(T; — Ts) determined on the base of both the
proposed model and other models analysed in this paper. The
comparison refers for Ny = 3.5. It can be observed that the clas-
sical lumped model predicts quite different values from those of
distributed model. A similar discrepancy can be observed for A;
values determined on the base of Su models for times less than
7 = 0.1. Contrary, the model proposed in this work predicts values
close to those of predicted by distributed model in the whole
range of time.

8. Conclusions

1. The simplified kinetic Eq. (43) describes the heat conduction in
spherical body at a constant boundary temperature and
predicts the results close to the exact ones. This equation also
can be adapted for the case of existence of heat transfer resis-
tance both inside and outside the body.

2. The employment in model of radiative cooling of spherical
body of simplified Eq. (43) worked out by the authors gives the
results consistent with the exact solution in the whole range of
radiation-conduction parameter. For short process times the
error caused by the simplification tends towards zero.

3. Taking as a comparative criterion the relative error ¢ defined by
Eq. (48) it has been proved that the simplified model proposed
in this work predicts more accurate results than the Su models,
particularly for short cooling times (7 < 0.1) and for large values
of the radiation-conduction parameter (N, > 3.5). The
employment of this model is not limited only to good heat
conductors.

4, Taking as a comparative criterion the relative error A defined by
Eq. (47) the presented model predicts results with good accu-
racy. For 1 = 0 and 1 — <o the relative errors A tend towards
zero. It is advantageous that the proposed model gives small
errors A for short times (r < 0.1) because the Su models within
this range give considerable errors A and make any interpre-
tation of quantity A value impossible.

5. The solution of equation of presented model is much more
simple than the solving of equation of distributed model, i.e.
a differential equation with non-linear boundary condition. In
the proposed model one should solve an ordinary differential
equation combined with an algebraic one.

6. The II Su model [4] described by relation (24) for A; = 1 is
consistent with the assumption of parabolic temperature
profile inside the body. Therefore, it is consistent with the
approximate Kkinetic equation which is known as LDF
equation.

7. The classical lumped model assuming a uniform body
temperature at any time (flat temperature profile) can be
employed only for limited range of N, values (practically for
Ny < 0.7). Outside this range the model gives very large
errors.

8. For N;¢ < 3.5 and 7 > 0.12 the proposed model gives worse
accuracy than the Il Su model. Then for N < 3.5 it is advisable
to employ a combine (hybrid) method of calculations consist-
ing in employing of the proposed model for 7 < 0.12 and the II
Su model for 7 > 0.12.
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Appendix A: Model based on approximation of temperature
profile with parabolic equation

If the temperature in sphere center is denoted as Ty and on
sphere boundary as T; one can get:

T = T+ (Ty —T0)<£>2 (A1)

When introducing the dimensionless variables A and » one can
obtain:

A = Ag+ (A — Ag)n* (A2)
Eq. (5) leads to the result:
h 2 3
A-3 /[AO + (A1 — Agy P = SAg + oA, (A3)
0
Therefore:
5- 3

When differentiating the profile equation (A.2) one can get:

0A

o 2(A1 —Ag)n

(A.5)

The above gradient for sphere boundary (n = 1) equals:

(%) = 2(A; —Ap) = 2A; —5A+3A; = 5(A; —A) (A6)
n=1

where the relation (A.4) is included.
Appendix B: Determination of A; in the proposed model

As a result of transformations of Eq. (46) an algebraic equation
has been obtained:

aA$ + bA3 + cAT + dA +eA? +fA 1 +g = 0 (B.1)
where:
a = —-3N;, (B.2)

b = 12N, A; (B.3)
18 .

€= =~ 18N,.A? (B4)

d = 7 — (2¢1 + 3¢ + 4c3) + 12N, A3 (B.5)

e = (q +3c, + 603 — n2)z — 6N A; <2A,2 —3A;+ 2) +3N.,

(B.6)
_ 184
f= — A (B.7)
g = A° (B.8)
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